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Electromagnetic Scattering Solution
of Conducting Strips in Layered Media
Using the Fast Multipole Method

Levent Giirel, Member, IEEE, and M. 1. Aksun, Member, IEEE

Abstract—The fast multipole method (FMM) is applied to the
solution of the electromagnetic scattering problems in layered
media for the first time. This is achieved by using closed-
form expressions for the spatial-domain Green’s functions for
layered media. Until now, the FMM has been limited to the
homogeneous-medinm problems. An integral equation based on
the two-dimensional scalar Helmholtz equation is solved to com-
pute the electromagnetic scattering from sample geometries of
conducting strips in layered media in order to demonstrate the
accuracy and the efficiency of the new method.

1. INTRODUCTION

UMERICAL solution of electromagnetic radiation and
Nscatterin g problems involving layered media have gained
popularity due to the need to computationally analyze and
simulate various important geometries, e.g., microwave inte-
grated circuits (MIC’s), printed circuit boards (PCB’s), and the
vast class of microstrip-like structures. Numerical analysis and
simulation of these structures are needed for both functional
considerations and electromagnetic-compatibility (EMC) is-
sues.

The formulation of layered-media problems has traditionally
been carried out in the spectral domain due to the avail-
ability of the Green’s functions in closed forms [1], [2].
Recently, a series of techniques have been developed to
obtain closed-form Green’s functions (CFGF’s) for layered
media in the spatial domain [3], [4]. The use of the CFGF’s
in a method-of-moments (MOM) formulation replaces the
numerical cornputation of the improper integrals in the spectral
domain with numerical integrations over finite regions in
the spatial domain. Furthermore, the spatial domain integrals
can be evaluated analytically in some cases [5]. Thus, this
approach reduces the matrix-filling time by several orders
of magnitude compared to the spectral-domain formulation.
However, it does not reduce the computational complexities
of the matrix-filling time and the memory requirement, which
are both O(IN2). Most importantly, despite the great savings
in the matrix-filling time, the solution of the NV x N dense
matrix equation remains, which requires O(N?3) operations
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in a direct scheme or O(N?) operations per iteration in an
iterative scheme.

On another front, several researchers are working to reduce
the computational complexities and the memory requirements
of the solution of integral equations of electromagnetics. For
the iterative solutions of the integral equations based on the
Helmbholtz equation, the fast multipole method (FMM), which
has O(N3/%) complexity per iteration, has recently attracted
attention [6], [7].

The FMM employs a harmonic expansion of the closed-
form Green’s function and has so far been limited to the
homogeneous-medium problems due to the lack of either
the closed-form Green’s function or the harmonic expansion
thereof for other more complicated media, including the lay-
ered media. By obtaining a closed-form expression for the
spatial domain Green’s function for an arbitrarily layered
medium and by interpreting each term of the expression as a
discrete complex image, we have been able to apply the FMM
to the solution of the Helmholtz equation for layered-media
problems. Thus, we have obtained a fast solution techniques
for the layered-media problems and extended the applica-
bility of the FMM from homogeneous-medium problems to
layered-medium problems. A similar technique has also been
developed for the solution of Laplace equation [8].

II. FAST MULTIPOLE METHOD IN A LLAYERED MEDIUM

The FMM is a fast algorithm to compute the fields due to an
arbitrary source distribution at a set of predetermined points in
space. By formulating the solution of an integral equation in an
iterative scheme, where one or more such field calculations are
performed at each iteration, it becomes possible to teduce the
complexity of the solution compared to traditional techniques.

The y-directed electric field at point p = Zx + 2z due to
a y-directed line source with unit amplitude located at point

p' = &x' + 22’ is given by

o
Wy . ik (z—2') 1
G N=--= dky €' —
(0, ) =~ /_ _ ke T
. [eikz!z—z’l _l_RTEezkz(z—{-z’)] 1)
where RTF is the generalized reflection coefficient defined at

the z = 0 plane due to an arbitrarily layered substrate below
this plane.
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Fig. 1. (a) Original problem in a layered medium. (b) Equivalent problem
with DCI’s in a homogeneous medium.

Using a robust technique by Aksun [4], (1) can be converted
to a closed-form expression given by

G(p, p') =
wi ok
— [HG (Klo= o) + > anHEY (ko= o) | @

n=1

where |p — pl,| = \/(z —2)2 + (z + 2/ + ie,)? and a,, and
a,, are complex constants for n = 1, 2, ---, Ny.

The FMM is based on the expansion of the Green’s function
using the addition theorems and no such expansions exist
for the layered-media Green’s functions given in (1) and (2).
However, we can still employ the FMM in the solution of
a layered-medium problem if we interpret (2) as the linear
superposition of the field due to a source at p’ and the
fields due to Ny discrete complex images (DCI’s) located at
Py, = &’ + 2(~2' — i, ). The DCUs are located at complex
coordinates and, therefore, we need to use addition theorems
for wave functions with complex arguments.

With the DCI interpretation, an equivalent problem is set up
in a homogeneous medium. In this equivalent problem, which
is illustrated in Fig. 1(b), Ny image sources in a homogeneous
medium are defined corresponding to each original source in
the layered-medium problem [Fig. 1(a)]. Thus, if N testing
functions are defined on the original conductors, N(N; + 1)
basis functions are defined on the original conductors and their
images.

The computation of the fields of V(N + 1) basis functions
on the N testing functions is carried out using the FMM
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Fig. 2. Examples of layered structures.

and repeated several times in an iterative scheme. Since Ny
is a constant, this specific implementation of the FMM for
layered-media problems has O(N3/2) computational complex-
ity per iteration and O(N®/2) memory requirement as its
homogeneous-medium counterpart.

III. COMPUTATIONAL RESULTS

In order to demonstrate the accuracy and the efficiency of
the layered-media implementation of the FMM presented in
this letter, a series of structures (as illustrated in Fig. 2), to
which the method can be applied, have been designed. Com-
mon to all these structures is an irregular, finite, and planar
array of strips, which has an overall extent of 1.5);. Plane
waves, whose electric fields are polarized in the y direction
and have unit amplitudes, are incident on the structures at 45°
as measured from the positive x axis. Electromagnetic scat-
tering problems for all four structures are solved using three
different schemes: direct solution with Gaussian elimination,
iterative solution with ordinary matrix-vector multiplication,
and iterative solution with layered-medium implementation of
the FMM. The numerical results obtained using these three
different schemes agree with each other for several digits
and, therefore, are indistinguishable on the plots presented in
Fig. 3, thus testilying to the accuracy of the layered-medium
implementation of the FMM.

The magnitude of the current distribution obtained on the
array when the array is in free space [Fig. 2(a)] is shown in
Fig. 3(a). An infinitely large conducting plane placed A\y/100
away from the array [Fig. 2(b)] causes the magnitude of the
current distribution to increase as seen in Fig. 3(b). When
the array is placed on a \g/100 dielectric slab with ¢, = 4
[Fig. 2(c)], the magnitude of the current distribution, shown
in Fig. 3(c), is seen to be modified and increased, but not as
much as that of the conducting-plane case. If the dielectric
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Fig. 3. Current distributions on the array corresponding to the example
structures of Fig. 2.

slab is backed by a conducting plane as depicted in Fig. 2(d),
the current magnitude becomes higher, as seen in Fig. 3(d).
Indeed, Fig. 3(d) can be compared to Fig. 3(b) to conclude
that the conducting plane is more dominant than the relatively
thin dielectric slab in determining the current distribution.
However, by comparing Fig. 3(a) and (c), it is easy to see
that the dielectric slab has a significant effect on the current
distribution in the absence of the conducting plane.

The discretization of the conducting array of Fig. 2(a) results
in 105 basis and testing functions. This array is duplicated
many times in the layered geometry of Fig. 2(d) to obtain
problems that are ten times as large. Separating the solution
and filling times, we have compared the solution times of
the FMM and the traditional solution techniques. Fig. 4(a)
compares the solution time of the FMM to the Gaussian
elimination and Fig. 4(b) compares the CPU time required
during a single iteration of the FMM to the ordinary matrix-
vector multiplication, respectively. As for the filling time, since
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Fig. 4. (a) Comparison of the solution times of the layered-medium im-
plementation of the FMM and the Gaussian elimination. (b) Comparison of
the per-iteration solution times of the layered-medum implementation of the
FMM and the ordinary matrix—-vector multiplication.

only a sparse matrix of the near-field interactions is filled in
the FMM as opposed to filling an V x /N dense matrix in the
direct solution, filling time of the FMM is always lower.

1V. CONCLUSION

In this letter, the applicability of the FMM has been ex-
tended to layered-media problems. As an example, we have
demonstrated the solution of the scalar Helmholtz equation
for the electromagnetic scattering from a two-dimensional
planar array of horizontal strips on a layered substrate. Nu-
merous straightforward generalizations are possible and will
be reported elsewhere.
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