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Abstract-The fast multipole method (FMM) is applied to the
solution of the electromagnetic scattering problems in layered
media for the first time. This is achieved by using closed-
form expressicms for the spatial-domain Green’s functions for
layered media. Until now, the FMM has been limited to the
homogeneous-medium problems. An integral equation based on
the two-dlmemsional scalar Helmholtz equation is solved to com-
pute the electromagnetic scattering from sample geometries of
conducting strips in layered media in order to demonstrate the
accuracy and the efficiency of the new method.

I. INTRODUCTION

N UMERIICAL solution of electromagnetic radiation and

scattering problems involving layered media have gained

popularity due to the need to computationally analyze and

simulate various important geometries, e.g., microwave inte-

grated circuits (MIC’ s), printed circuit boards (PCB’S), and the

vast class of rnicrostrip-like structures. Numerical analysis and

simulation of these structures are needed for both functional

considerations and electromagnetic-compatibility (13MC) is-

sues.

The formulation of layered-media problems has traditionally

been carried out in the spectral domain due to the avail-

ability of the Green’s functions in closed forms [1], [2].

Recently, a series of techniques have been developed to

obtain closed-form Green’s functions (CFGF’s) for layered

media in the spatial domain [3], [4]. The use of the CFGF’s

in a method-of-moments (MOM) formulation replaces the

numerical computation of the improper integrals in the spectral

domain with numerical integrations over finite regions in

the spatial domain. Furthermore, the spatial domain integrals

can be evaluated analytically in some cases [5]. Thus, this

approach reduces the matrix-filling time by several orders

of magnitude compared to the spectral-domain formulation.

However, it does not reduce the computational complexities

of the matrix-filling time and the memory requirement, which

are both O (ll~z). Most importantly, despite the great savings

in the matrix-filling time, the solution of the N x N dense

matrix equation remains, which requires O (IV3 ) operations
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in a direct scheme or O (N2 ) operations per iteration in an

iterative scheme.

On another front, several researchers are working to reduce

the computational complexities and the memory requirements

of the solution of integral equations of (electromagnetic. For

the iterative solutions of the integral equations based on the

Helmholtz equation, the fast multipole method (FMM), which

has 0(i’V3/2) complexity per iteration, lhas recently attracted

attention [6], [7].

The FMM employs a harmonic expansion of the closed-

form Green’s function and has so far been limited to the

homogeneous-medium problems due to the lack of either

the closed-form Green’s function or the harmonic expansion

thereof for other more complicated media, including the lay-

ered media. By obtaining a closed-form expression for the

spatial domain Green’s function for an arbitrarily layered

medium and by interpreting each term clf the expression as a

discrete complex image, we have been able to apply the FMM

to the solution of the Helmholtz equation for layered-media

problems. Thus, we have obtained a fast solution techniques

for the layered-media problems and extended the applica-

bility of the FMM from homogeneous-medium problems to

layered-medium problems. A similar technique has also been

developed for the solution of Laplace equation [8].

II. FAST MULmPOLE METHOD IN A LAYERED MEDIUM

The FMM is a fast algorithm to compute the fields due to an

arbitrary source distribution at a set of prl~determined points in

space. By formulating the solution of an integral equation in an

iterative scheme, where one or more such field calculations are

performed at each iteration, it becomes possible to reduce the

complexity of the solution compared to traditional techniques.

The y-directed electric field at point p = iiz + ,2z due to

a y-directed line source with unit amplitude located at point

p’ = i%’ + .2z’ is given by

. [e~kzlz-z’l + ~~Eetk~(z+z’)] (1)

where ATE is the genl>ralized reflection Coeffickrtt defined at

the z = O plane due to an arbitrarily layered substrate below

this plane.
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Fig, 1. (a) Original problem in a layered medium. (b) Equivalent problem

with DCI’S in a homogeneous medium.

Using arobusttechnique byAksun [4],(l) canbeconverted

to a closed-form expression given by

G’(A P’)=

--[ 1‘p ~jl)(k\p–p’l)+~anHjl) (klp–pL/)(2)
4

n=l

where lp–p~l = (Z —JY)2+(Z+Z’+ia.)2 and an and

am are complex constants for n = 1, 2, . . . , lVI.

The FMM is based on the expansion of the Green’s function

using the addition theorems and no such expansions exist

forthelayered-media Green’ s functions given in (1) and (2).

However, we can still employ the FMM in the solution of

a layered-medium problem if we interpret (2) as the linear

superposition of the field due to a source at p! and the

fields due to lVI discrete complex images (DCI’S) located at

P~ = ~z’ + 2( –.z’ – iam ). The DCI’S are located at complex

coordinates and, therefore, we need to use addition theorems

for wave functions with complex arguments.

With the DCI interpretation, an equivalent problem is setup

in a homogeneous medium. In this equivalent problem, which

is illustrated in Fig. 1(b), NI image sources in a homogeneous

medium are defined corresponding to each original source in

the layered-medium problem [Fig. l(a)]. Thus, if IV testing

functions are defined on the original conductors, N(IVI + 1~

b,asis functions are defined on the original conductors and their

images.

The computation of the fields of N(IV1 + 1) basis functions

on the iV testing functions is carried out using the FMM
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Fig. 2. Examples of layered structures.

and repeated several times in an iterative scheme. Since IVI

is a constant. this specific implementation of the FMM for

layered-media problems has 0( IV3i2) computational complex-

ity per iteration and O (lV3f2 ) memory requirement as its

homogeneous-medium counteqmt.

III. COMPUTATIONAL RESULTS

In order to demonstrate the accuracy and the efficiency of

the layered-media implementation of the FMM presented in

this letter, a series of structures (as illustrated in Fig. 2), to

which the method can be applied, have been designed. Com-

mon to all these structures is an irregular, finite, and planar

array of strips, which has an overall extent of 1.5A0. Plane

waves, whose electric fields are polarized in the y direction

and have unit amplitudes, are incident on the structures at 45°

as measured from the positive z axis. Electromagnetic scat-

tering problems for all four structures are solved using three

different schemes: direct solution with Gaussian elimination,

iterative solution with ordinary matrix-vector multiplication,

and iterative solution with layered-medium implementation of

the FMM. The numerical results obtained using these three

different schemes agree with each other for several digits

and, therefore, are indistinguishable on the plots presented in

Fig. 3, thus testifying to the accuracy of the layered-medium

implementation of the FMM.

The magnitude of the current distribution obtained on the

array when the array is in free space [Fig. 2(a)] is shown in

Fig. 3(a). An infinitely large conducting plane placed &/100

away from the array [Fig. 2(b)] causes the magnitude of the

current distribution to increase as seen in Fig. 3(b). When

the array is placed on a ~o/ 100 dielectric slab with e. = 4

[Fig. 2(c)], the magnitude of the current distribution, shown

in Fig. 3(c), is seen to be modified and increased, but not as

much as that of the conducting-plane case. If the dielectric
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Fig. 3. Current distributions on the array corresponding to the example
structures of Fig. 2.

slab is backecl by a conducting plane as depicted in Fig. 2(d),

the current magnitude becomes higher, as seen in Fig. 3(d).

Indeed, Fig, 3(d) can be compared to Fig. 3(b) to conclude

that the conducting plane is more dominant than the relatively

thin dielectric slab in determining the current distribution.

However, by comparing Fig. 3(a) and (c), it is easy to see

that the dielectric slab has a significant effect on the current

distribution in the absence of the conducting plane.

The discretization of the conducting array of Fig. 2(a) results

in 105 basis and testing functions. This array .is duplicated

many times in the layered geometry of Fig. 2(d) to obtain

problems that are ten times as large. Separating the solution

and filling times, we have compared the solution times of

the FMNI ani the traditional solution techniques. Fig. 4(a)

compares the solution time of the FMM to the Gaussian

elimination and Fig. 4(b) compares the CPU time required

during a single iteration of the FMM to the ordinary matrix-

vector multiplication, respectively. As for the filling time, since

~:r~~~

o 200 400 600 800 1000 1200

Number of Unknowns

(a)

u “’-o 200 400 600 800 1000 1200

Number of Unknowns

(b)

Fig. 4. (a) Comparison of the solution times of the layered-medium im-
plementation of the FMM and the Gaussian elimination. (b) Comparison of
the per-iteration solution times of the layered-reed urn implementation of the
FMM and the ordinary matrix–vector rnultiplicatiun.

only a sparse matrix of the near-field interactions is filled in

the FMM as opposed to filling an lV x T( dense matrix in the

direct solution, filling time of the FMM is always lower.

IV. CONCLUSION

In this letter, the applicability of the FMM has been ex-

tended to layered-media problems. As an example, we have

demonstrated the solution of the scalar Helmholtz equation

for the electromagnetic scattering from a two-dimensional

planar array of horizontal strips on a layered substrate. Nu-

merous straightforward generalizations are possible and will

be reported elsewhere.
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